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Numerous experimental data on the rapid solidification of binary systems exhibit the formation of metastable
solid phases with initial �nominal� chemical composition. This fact is explained by complete solute trapping
leading to diffusionless �chemically partitionless� solidification at a finite growth velocity of crystals. Special
attention is paid to developing a model of rapid solidification which describes a transition from chemically
partitioned to diffusionless growth of crystals. Analytical treatments lead to the condition for complete solute
trapping which directly follows from the analysis of the solute diffusion around the solid-liquid interface and
atomic attachment and detachment at the interface. The resulting equations for the flux balance at the interface
take into account two kinetic parameters: diffusion speed VDI on the interface and diffusion speed VD in bulk
phases. The model describes experimental data on nonequilibrium solute partitioning in solidification of Si-As
alloys for the whole range of solidification velocity investigated.
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I. INTRODUCTION

The concept of “solute trapping” has been introduced to
define the processes of solute redistribution at the interface
which are accompanied by �i� the increasing of the chemical
potential �1� and �ii� the deviation of the partition coefficient
for solute distribution towards unity from its equilibrium
value �independently of the sign of the chemical potential�
�2�.

In experimental investigations of rapid solidification, a
complete solute trapping leading to diffusionless �chemically
partitionless� solidification was first observed by Olsen and
Hultgren and Duwez et al. in experiments on rapid solidifi-
cation �3�. They showed that rapidly solidifying alloy sys-
tems lead to the originating of supersaturated solid solution
with the initial �nominal� chemical composition of the alloy.
Later on, crystal microstructures with the initial chemical
composition were found by Biloni and Chalmers in rapidly
solidified pre-dendritic and dendritic patterns �4�.

Backer and Cahn �1� have shown that with a finite solidi-
fication velocity in a Cd-Zn system the coefficient of the Cd
distribution becomes equal to the unit that characterizes dif-
fusionless solidification. This fact has been confirmed in
many binary systems by Miroshnichenko �5�. He investi-
gated dendritic crystal microstructure after quenching from
the liquid state by splat-quenching and melt-spinning meth-
ods. The results of Miroshnichenko’s microstructural analy-
sis show that at a cooling rate greater than some critical
value �depending on an alloy and experimental method this
value is in the range 105–106 K/s� a core of main stems of
dendrites has initial �nominal� chemical composition of the
alloy. A critical value for undercooling in the transition to
purely thermally controlled growth with a homogeneous dis-
tribution of chemical composition in Ni-B solidifying
samples processed by an electromagnetic levitation facility
has been obtained by Eckler et al. �6�. Finally, it is necessary
to note that many eutectic systems undergo chemically par-

titionless solidification with an initial composition �5� that
can be explained by the transition to diffusionless solidifica-
tion �7�.

As a consequence, experimental investigations �1,3–6�
show that with increasing driving force of solidification sol-
ute traps are much more pronounced by solidifying micro-
structure. At a finite value of the critical governing param-
eters �undercooling, cooling rate or temperature gradient�
complete solute trapping occurs. Because the finite value of
the governing parameter defines the concrete solidification
velocity, complete solute trapping and diffusionless solidifi-
cation begin to proceed with a fixed critical growth velocity
of crystals.

The main purpose of the present paper is to describe a
model for solute trapping and the transition from chemically
partitioned to diffusionless solidification in a binary system.
Using the local nonequilibrium approach to rapid solidifica-
tion, an analysis of diffusion mass transport in bulk phases
together with conditions of atomic attachment and detach-
ment on the solid-liquid interface is given.

The paper is organized as follows. In Sec. II, previous
investigations of solute trapping are shortly reviewed. In Sec.
III, an analysis of solute diffusion leading to pronounced
solute trapping and complete solute trapping is given. The
nonequilibrium solute partitioning function for atoms on the
interface is derived in Sec. IV. A comparison with previous
models and experimental data on solidification of binary sys-
tems is presented in Sec. V. Finally, in Sec. VI conclusions of
the work are summarized.

II. PREVIOUS INVESTIGATIONS

For the simplest case of an atomic system, let us consider
an isobaric and isothermal binary system �the pressure P and
temperature T are constant� with concentration XA and XB of
atoms A and B, respectively. In this article, we denote X as
the concentration of the atoms of B sort. For a brief over-
view, we summarize the equilibrium and nonequilibrium sol-
ute distribution on the solid-liquid interface.*Peter.Galenko@dlr.de
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A. Equilibrium

In equilibrium, the concentration of atoms X at the phase
interface is not equal from both sides of the interface due to
the different solubility of atoms in phases. During the equi-
librium coexistence of phases �gas-solid, liquid-solid, gas-
liquid� the atoms are distributed along the interface in con-
sistency with the diagram of a phase state. A difference in
atomic concentration in phases at the interface can be char-
acterized by the equilibrium coefficient ke of the atomic dis-
tribution between phases. For equilibrium coexistence of
phases �e.g., between crystal and melt, vapor and crystal,
crystal and liquid�, the coefficient ke can be expressed in the
general form �8�

ke�XL,XS,T� =
XS

e

XL
e � exp�−

���

RT
� . �1�

In Eq. �1�, XL
e and XS

e are the mole fractions of the B com-
ponent in the liquid phase �L� or crystal �S�, respectively, R
is the gas constant, and ��� is the difference in chemical
potentials described by

��� = ��B� − ��A� , �2�

with

��B� = �BS� − �BL� , ��A� = �AS� − �AL� , �3�

where ��A� and ��B� are the driving forces for redistribution
of atoms A and B, respectively, which are defined by redis-
tribution potentials �A� and �B� for phases L and S. The dif-
ferences ��A� and ��B� , Eq. �3�, define the sign of ��� in Eq.
�2�. For instance, if ��� is negative ���A� ���B��, one has
ke�1—the case of smaller solubility of atoms B in the phase
S in comparison with their solubility in the phase L.

As a general characteristic of phase equilibria in binary
systems, expression �1�, together with Eqs. �2� and �3�, is
usually considered as a measure of the driving force for
atomic redistribution at the phase interface. It can also be
considered as one of the main parameters for the construc-
tion of the diagrams of a phase state.

B. Nonequilibrium

Expressions �1�–�3� assume local equilibrium at the inter-
face, which is a useful approximation for many systems
transforming at small interface velocities. At a large driving
force for the interface advancing and with increasing of the
interface velocity, the local equilibrium is not maintained �1�.
Therefore, the condition for local interfacial equilibrium was
relaxed by taking into account a kinetic interface undercool-
ing and deviations from chemical equilibrium at the alloy
solidification front �8,10�.

A number of models �2,9–13� have been proposed to ac-
count for solute trapping and related phenomena observed
during rapid phase transformations. One of the well-
established boundary conditions for solute redistribution can
be taken from the continuous growth model �CGM� applied
to solute trapping by Aziz and Kaplan �2,13,14�. The CGM
assumes alloy solidification at a “rough interface;” i.e., all
interface sites are potential sites for crystallization events.

With a high solidification rate, the atom can be trapped on a
high-energy site of the crystal lattice. This leads to a local
nonequilibrium on the interface and to the formation of
metastable solids �see examples in Ref. �15��. As a result, the
solute partitioning function at the solid-liquid interface is
described by �2,13�

k�V� =
ke + V/VDI

1 + V/VDI
, �4�

where VDI is the speed of diffusion at the interface and ke is
the value of the equilibrium partition coefficient given by Eq.
�1�—i.e., with the negligible interface motion V→0. Equa-
tion �4� evaluates the ratio XS /XL at the interface for dilute
solutions of B �“solute”� in A �“solvent”�.

The interfacial diffusion speed VDI is the kinetic param-
eter describing the deviation from chemical equilibrium at
the interface. It has been defined as the ratio between the
diffusion coefficient DI at the interface and the characteristic
distance � for the diffusion jump �2,13�: VDI=DI /�. The dis-
tance � is assumed to be equal to the width of the solid-
liquid interface �few interatomic distances�, and the diffusion
jumps are taken along the direction of growth. Therefore,
this definition for VDI is corrected by results of molecular
dynamic simulations �16�. They include diffusion in all spa-
tial directions; i.e., the diffusion speed is VDI=6DI /�, where
the factor of 6 accounts for the possibility of jumps along the
six �±x ,y ,z� Cartesian axes.

Outcomes following from the solute partitioning function
�4� were compared in the modeling of solute trapping using
numerical computations based on the phase-field theory of
alloy’s solidification. Wheeler et al. �17� naturally included
an energy penalty for high composition gradients in the liq-
uid that supresses the partitioning of solute at a rapidly mov-
ing interface and leads to solute trapping. They also showed
that the construction of common tangents to the curves of
free energy �in the spirit of Baker and Cahn �18�� has to be
defined for nonequilibrium concentrations which already de-
pend on the solidification velocity. In order to eliminate or
reduce the solute trapping effect by the diffuse interface at
small growth velocity, Karma and co-workers proposed an
ad hoc suitable antitrapping condition to the diffusion flux
�19�. These works �17,19� showed that when the solute trap-
ping effect comes to modeling alloy solidification with both
phase and concentration fields, a crucial issue arises concern-
ing the relative magnitudes of the gradients of the two fields
within the solidification front as well as the relative thickness
of the concentration jump interface. Additionally, Conti �20�
investigated the usual one-dimensional �1D� formulation of
the phase-field model without the concentration gradient cor-
rections of Wheeler et al. �17�. He resolved the governing
equations numerically for the interface temperature and the
solute concentration field as a function of the growth veloc-
ity. The partition coefficient k�V� is monotonically increasing
towards unity at large growth rates following the predictions
of the continuous growth model �4�. However, in contrast to
the results of natural experiments �1,3–6�, numeric predic-
tions �17,20� were not able to reach complete chemically
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partitionless �diffusionless� solidification at a finite solidifi-
cation velocity.

One of the deficiencies of the function �4� is the difficulty
to describe complete solute trapping at the finite solidifica-
tion velocity: Equation �4� predicts k→1 only with V→�.
Contrary to this prediction, a transition to partitionless solidi-
fication occurs at a finite solidification velocity as has been
shown in numerous experiments �1,3–6�. Molecular dynamic
simulations also show that the transition to complete solute
trapping is observed at a finite interface velocity in rapid
solidification of a binary system �16�. Therefore, as an exten-
sion of Eq. �4�, a generalized function for solute partitioning
in the case of local nonequilibrium solute diffusion within
the approximation of a dilute system has been introduced by
Sobolev �21�. This yields

k�V� =
�1 − V2/VD

2 �ke + V/VDI

1 − V2/VD
2 + V/VDI

, V � VD,

k�V� = 1, V � VD. �5�

The diffusion speed VD introduced in Eq. �5� is the charac-
teristic bulk speed. It is defined as a maximum speed for
solute diffusion propagation or as a speed for the front of the
solute diffusion profile. In particular the speed VD is obtained
by the speed of propagation of the plane harmonic wave
away from the solid-liquid interface �see the Appendix in
Ref. �22��. As the velocity V of the interface is comparable
by magnitude to the speed VD, the high-frequency limit takes
place: �	D
1, where � is the real cyclic frequency of the
plane harmonic wave and 	D is the time for relaxation of the
diffusion flux to its steady state. In this case, VD has to be
considered finite and it is defined as VD= �D /	D�1/2, where D
is the diffusion coefficient in bulk liquid.

In the local equilibrium limit—i.e., when the bulk diffu-
sive speed is infinite, VD→�—expression �5� reduces to the
function k�V�, which takes into account the deviation from
local equilibrium at the interface only as described by Eq.
�4�. The function �5� includes the deviation from local equi-
librium at the interface �introducing interfacial diffusion
speed VDI� and in the bulk liquid �introducing diffusive speed
VD in the bulk liquid�. As Eq. �5� shows, complete solute
trapping k�V�=1 proceeds at V=VD. This result has been
introduced by Sobolev from a postulation about the zero
value for the diffusion coefficient at V�VD. The next section
further details that the condition for complete solute trapping
follows directly from the analysis of solute diffusion flux.

III. DIFFUSION MASS TRANSPORT AND SOLUTE
TRAPPING

In 1D solidification along the z axis, the mass balance is
given by

�X

�t
= −

�J

�z
, �6�

where t is the time and J is the diffusion flux. To consider
solute trapping in 1D local nonequilibrium solidification, we
take one of the results from a model of rapid phase transi-

tions �23�. Using this model, the evolution equation for dif-
fusion flux J along the z axis is described by

J = M� �

�z
� �s

�X
+ �x

2�2X

�z2 � − � j
�J

�t
	 , �7�

where s is the entropy density, �x the factor proportional to
the correlation length, and M is the diffusion mobility of
atoms. The latter is defined by

M = TD̄, D̄ = D������/�X�−1, �8�

where D is the diffusion coefficient and �� is the difference
of chemical potentials between solvent and solute. From
known thermodynamic expressions �24� one can accept that

�s

�X
= −

��

T
, � j =

	D

TD

�����
�X

=
	D

TD̄
, �9�

where 	D is the time for diffusion flux relaxation to its steady
state. Then, omitting the term responsible for atomic
correlation—i.e., assuming that �x=0—one can get from Eq.
�7� the expression

J = M� 1

T

�����
�z

−
	D

TD̄

�J

�t 	 . �10�

Using Eq. �8�, the evolution equation �10� results as follows:

J = − D̄
�����

�z
− 	D

�J

�t
. �11�

We find the solution for the diffusion flux J which has
significance in the analysis of solute trapping. Using the ex-
pression for the diffusion speed, VD= �D /	D�1/2, from Eqs.
�6� and �11� one gets

	D
�2J

�t2 +
�J

�t
= D

�2J

�z2 . �12�

Equation �12� is a partial differential equation of hyperbolic
type. It describes the flux J in the so-called “hyperbolic evo-
lution,” which proceeds with a sharp front of the profile for
the solute transport. It occurs due to both the diffusive and
propagative nature of the transport in the high-frequency
limit �	D
1 with V
VD.

For a steady-state regime of interfacial motion Eq. �12�
takes the form

D�1 −
V2

VD
2 �d2J

dz2 + V
dJ

dz
= 0, �13�

which is true in a reference frame moving at constant veloc-
ity V with the interface z=0. A general solution of Eq. �13� is

J�z� = c1 + c2 exp�−
Vz

D�1 − V2/VD
2 �� . �14�

To define a particular solution one can assume the following
boundary conditions: the balance on the interface is J�z=0�
=V�XL

* −XS
*�, and the flux is limited by the expression J�z

→��=0 far from the interface with z→�. The latter condi-
tion gives c1=0 for any velocity V, and one gets c2=0 for
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V�VD. Also, from the interfacial balance with z=0 one gets
c2=V�XL

* −XS
*� for V�VD. As a result, solution �14� trans-

forms into the particular solution

J�z� = V�XL
* − XS

*�exp�−
Vz

D�1 − V2/VD
2 ��, V � VD,

J�z� = 0, V � VD, �15�

where XL
* and XS

* are the liquid concentration and solid con-
centration, respectively, on the interface.

Solution �15� gives the condition for complete solute trap-
ping with finite velocity V�VD. This is expressed by the
expression for the solute partitioning function:

k�V� = XS
*/XL

* � 1, V � VD,

k�V� = 1, XS
* = XL

*, V � VD. �16�

The latter condition in Eq. �16� defines the equality of the
concentrations in the phases and leads to complete solute
trapping.

To obtain an explicit form for the solute partitioning func-
tion �16�, we analyze the balance of diffusion fluxes on the
interface. Taking again the steady-state regime of solidifica-
tion constant velocity V, from the system �6� and �11� one
can obtain the equations

dJ

dz
= V

dX

dz
, J = − D̄

d����
dz

+ 	DV
dJ

dz
, �17�

from which we get the single equation for the diffusion flux
J. This yields

J = − D� �����
�X

�−1d����
dz

+ D
V2

VD
2

dX

dz
. �18�

The above-defined above thermodynamic parameter D̄ and
the diffusion speed VD in bulk have been taken into account.
Defining the gradient of the difference of the chemical po-
tentials as d���� /dz= ������ /�X�dX /dz, Eq. �18� gives

J = − D� �����
�X

�−1�1 −
V2

VD
2 	d����

dz
. �19�

This equation is a general expression for the steady diffusion
flux into the liquid from the interface. Within the local equi-
librium limit VD→� one can obtain the known Fickian ap-
proximation, which has been used previously for analysis of
solute trapping �25,26�.

Analytical solutions �27� for solidification under local
nonequilibrium diffusion show that the concentration in both
phases becomes equal to the initial �nominal� concentration
and the diffusion flux is absent for V�VD. It is also given by
Eq. �15�. Therefore, in addition to Eq. �19�, one can finally
obtain

J = − D� �����
�X

�−1�1 −
V2

VD
2 	d����

dz
, V � VD,

J = 0, V � VD. �20�

At the phase interface one assumes in Eq. �20�, first, that
the term D������ /�X�−1 is proportional to concentration
such that

D� �����
�X

�−1

=
DIXL

*

RT
. �21�

Second, the chemical inhomogeneity �solutal segregation�
exists due to the jump of the chemical potential �� which
has the interfacial gradient −d���� /dz��� /W0 at a small
distance W0 of the order of a few interatomic distances.
Third, in an approximation of ideal �or even real� solutions,
one can assume for the interfacial difference of chemical
potentials

�� = ��L�X� − ��S�X�

� RT�ln XL
e − ln XL

*� − RT�ln XS
e − ln XS

*�

= RT ln�XS
*/XL

*� − RT ln�XS
e/XL

e�

= RT�ln k�V� − ln ke� ,

where XL
e and XS

e are equilibrium concentrations on the inter-
face from the liquid phase and solid phase, respectively, and
k�V� is the ratio of concentrations on the interface defined by
Eq. �16�. Taking into account these last evaluations, one can
get for the chemical potential gradient the expression

−
d����

dz
�

RT

W0
ln

k�V�
ke

. �22�

Integration of the balance �17� on the interface gives the
flux

J = V�XL
* − XS

*� . �23�

Substituting Eqs. �21� and �22� into the expression for diffu-
sion flux, Eq. �20�, with using the balance �23� gives the
following expression for the solute partitioning function:

�1 −
V2

VD
2 	ln

k�V�
ke

=
V

VDI
�1 − k�V��, V � VD,

k�V� � XS
*/XL

* = 1, V � VD, �24�

where VDI=DI /W0 is the speed for solute diffusion on the
interface.

Equation �24� gives the evaluation of solute trapping ef-
fect through the solute partitioning function k�V� derived ini-
tially from the analysis of the evolution equation �7� for the
diffusion flux J. This equation takes into account finite dif-
fusion speeds on the interface and in bulk liquid. The intro-
duction of these two speeds is a consequence of the local
nonequilibrium both on the interface and in bulk liquid. As
Eq. �24� shows, the complete solute trapping k�V�=1 pro-
ceeds at V=VD. Equation �24� transforms into a previously
known expression for the function k�V� derived in Refs.
�25,26� with relaxing local equilibrium on the interface and
using local equilibrium in bulk liquid �VD→�� for the di-
luted binary system �XL

* 1�.
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IV. SOLUTE PARTITIONING FUNCTION

We use a model of diffusion in which particles move by
diffusion jumps in random time between two phases �states�.
This model was called the “two-level model of diffusion,”
and it was introduced in the context of various
applications—e.g., in chromatography �28� or for a longitu-
dinal solute dispersion in a tube with flowing water �Taylor’s
dispersion� �29�.

Let Pi�t ,z� be the probability density of a particle position
in the phase i=L or in the phase i=S at the moment t. Then
local conservation of the probability density in a point with
coordinate z belonging to the phase i is defined by

�Pi

�t
= −

�Ji

�z
. �25�

If the interface moves with a velocity comparable to the sol-
ute diffusion speed VD in bulk phases, then the flux Ji�t ,z� of
the density probability depends on the prehistory of the dif-
fusion process. The flux, therefore, is defined by

Ji�t,z� = − �
−�

t

Di�t − t*�
�Pi�t*,z�

�z
dt*. �26�

The relaxation function Di�t− t*� can be chosen in the
form Di�t− t*�=Di�0�exp�−�t− t*� /	D� of exponential decay.
In such a case, Eq. �26� is reduced to the Maxwell-Kattaneo
equation

	D
�Ji

�t
+ Ji + Di�0�

�Pi

�z
= 0. �27�

It is accepted in Eq. �27� that Di�0� is the diffusion coeffi-
cient at the final moment of relaxation prehistory so that
Di�0�=D. System �25� and �27� gives a single equation of a
hyperbolic type for the density of probability,

	D
�2Pi

�t2 +
�Pi

�t
= Di

�2Pi

�z2 , �28�

or for the flux,

	D
�2Ji

�t2 +
�Ji

�t
= Di

�2Ji

�z2 . �29�

As was shown in Ref. �30�, the density of probability de-
scribed by Eq. �28� gives a positive entropy production for
the particle exchange between two levels �between two sub-
systems or phases�.

Integration of Eq. �28� by an infinitesimal layer including
an interface leads to the balance

�Di
�Pi

�z
+ 	D

��VPi�
�t

+ Ji	
S

L

= 0. �30�

In the steady-state regime one can get the following equation
for the ith phase:

Di
�Pi

�z
+ 	D

��VPi�
�t

+ Ji

= Di
dPi

dz
− 	DV2dPi

dz
+ Ji = Di�1 −

V2

VDi
2 �dPi

dz
+ Ji,

�31�

which is true in a reference frame moving with constant ve-
locity V and placed on the interface where the balance �25� is
described as dJi /dz=VdPi /dz. Using Eq. �31�, the balance
�30� is

JL − JS = − �DL�1 −
V2

VDL
2 �dPL

dz
− DS�1 −

V2

VDS
2 �dPS

dz
	 .

�32�

In Eq. �32� we introduce the speeds VDL and VDS of inter-
facial solute diffusion from the liquid and solid phases, re-
spectively. They are defined by

VDL = DL/lD = �LlD, VDS = DS/lD = �SlD, �33�

where DL and DS are the diffusion coefficients in the phases,
lD scales for diffusion within which the diffusion jumps oc-
cur in phases �or on the interface�, and �L and �S are the
frequencies of diffusion jumps in phases �or on the inter-
face�. From the theory of the transitive state �31� one can
define the frequencies of atomic jumps as

�L = �0 exp�−
QD

RT
� ,

�S = �0 exp�−
QD + ���

RT
� , �34�

where �0 is the attempt frequency of atomic jumps of the
order of the vibrational frequency �8,32�, QD the activation
barrier for atomic diffusion through the interface, and ��� is
the difference of chemical potentials defined by Eqs. �2� and
�3�. Obviously, interfacial equilibrium exists for

�S/�L = exp�− ���/�RT�� � ke. �35�

From the interfacial balance �32� there follows

JL − JS = − �1 −
V2

VDL
2 � d

dz
�DLPL − DS�V�PS� , �36�

where DS�V� is the function of the interfacial velocity V de-
fined by

DS�V� = DS

1 − V2/VDS
2

1 − V2/VDL
2 = �

0, VDS  VDL,

DS, VDS � VDL,

DS�1 − V2/VDL
2 �−1, VDS → � .

�
�37�

The function �37� describes the following cases: �a� VDS
→0, negligible diffusion in solid �DS=0� in comparison with
the diffusion in liquid; �b� VDS�VDL, approximate equality
for diffusion speeds in the liquid and solid around the inter-
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face; and �c� VDS→�, condition of local equilibrium in the
diffusion field of the solid �that occurs with high frequency
jumps of atoms in solid�.

From now on, the above case �b� for approximate equality
of diffusion speeds in phases around the interface is taken.
First, we use the finite difference −dx= lD in the balance �32�.
Second, we take into account that the factor �1−V2 /VDL

2 � is
related to the bulk diffusion. Finally, using the definition
�33�, the balance �32� is described by

JL − JS = �1 −
V2

VD
2 ��VDLPL − VDSPS� , �38�

where VD is the solute diffusion speed in bulk liquid around
the interface. Using Eqs. �33�–�35�, this balance can be re-
written as

JL − JS = VDL�1 −
V2

VD
2 ��PL − kePS� . �39�

For the concentrated binary system the probabilities PL
and PS in Eq. �39� are directly proportional to the atomic
concentrations in phases. This leads to

PL = XS�1 − XL�/�, PS = XL�1 − XS�/� , �40�

where � is the atomic volume. Therefore, Eq. �39� can be
rewritten as

JL − JS = �1 −
V2

VD
2 ��XS�1 − XL� − keXL�1 − XS��

VDL

�
.

�41�

We further use the already obtained result �20� according to
which the diffusion flux is absent at V�VD. Then, the dif-
ference �41� of fluxes on the interface takes the form

JL − JS = �1 −
V2

VD
2 ��XS�1 − XL� − keXL�1 − XS��

VDL

�
,

V � VD,

JL = JS, V � VD. �42�

The net flux �42� must be equal to the diffusion flux

JD = �XL − XS�
V

�
. �43�

From the equality of Eqs. �42� and �43� one gets

�XL − XS�
V

VDI
= �1 −

V2

VD
2 ��XS�1 − XL� − keXL�1 − XS�� ,

V � VD,

XL = XS, V � VD, �44�

in which VDI=VDL is the diffusion speed on the interface
from the liquid phase. Equation �44� can be easily resolved
regarding the function k�V�=XS /XL of nonequilibrium solute
partitioning. This yields

k�V,XL
*� =

�1 − V2/VD
2 �ke + V/VDI

�1 − V2/VD
2 ��1 − �1 − ke�XL

*� + V/VDI

, V � VD,

k�V,XL
* = X0� = 1, V � VD, �45�

where XL
* is the solute concentration in the liquid at the in-

terface.

V. DISCUSSION AND COMPARISON
WITH EXPERIMENTAL DATA

Expression �45� gives the general functional dependence
of solute partitioning at the phase interface for concentrated
binary systems, and with application to rapid solidification, it
exhibits the two known limits. In the first limit, when solidi-
fication proceeds with local nonequilibrium at the interface
only—i.e., with VD→�—Eq. �45� leads to the solute parti-
tioning function of Aziz and Kaplan �2�. In the second limit,
as the concentration XL

* of the second dissolved component
becomes small—i.e., the term �1−ke�XL

* might be negligible
in comparison with unity—Eq. �45� transforms into Eq. �5�
as suggested by Sobolev �21�.

From the analytical solution of the problem of rapid so-
lidification under the steady-state regime �27�, the concentra-
tion at the planar interface is given by

XL
* =

X0

k�V�
, V � VD,

XL
* = X0, V � VD, �46�

where X0 is the nominal �initial� concentration of the solute
in the system. In accordance with the solutions obtained in
Refs. �27�, a source of concentration perturbations—i.e., the
solid-liquid interface—moving at a velocity V equal to or
higher than the maximum speed VD of these perturbations,
cannot change the concentration or create the concentration
profile ahead of itself. As a result for the interface, one ob-
tains in Eq. �46� that XL=XS=X0 with V�VD. Then the sub-
stitution of Eq. �46� into Eq. �45� leads to the following
expression for nonequilibrium solute partitioning function:

k�V,X0� =
�1 − V2/VD

2 ��ke + �1 − ke�X0� + V/VDI

1 − V2/VD
2 + V/VDI

, V � VD,

k�V,X0� = 1, V � VD. �47�

Figure 1 demonstrates the behavior of solute partitioning,
Eq. �47�, as a function of the interface velocity at various
nominal solute concentrations. As the system deviates from a
diluted one, the trapping of a solute becomes much more
pronounced. Also, Eq. �47� shows that, independently from
the solute concentration within the system, the complete sol-
ute trapping k�V ,X0�=1 proceeds when the interface velocity
becomes equal to or greater than the diffusion speed—i.e.,
with V�VD. The condition of equality of concentrations in
the liquid and solid �see Eqs. �44� and �45�� means that the
lines of the nonequilibrium kinetic liquidus and solidus in the
kinetic phase diagram are merging. It can also be considered
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as the characteristics of diffusionless processes.
As a general outcome, Eq. �47� includes the following

important cases for nonequilibrium phase transformations:
�i� the dilute limit described by Aziz’s model �13�, Eq. �4�,

�1 − ke�X0  1 and VD → � ,

�ii� dilute limit described by Sobolev’s solute partitioning
function, Eq. �5�,

�1 − ke�X0  1 and with the finite VD,

�iii� the concentrated system described by Aziz and Kaplan’s
model, Ref. �2�,

VD → � for arbitrary concentration X0.

In comparison with the present model’s prediction described
by Eq. �47� these limits are plotted in Fig. 2.

Figure 3 exhibits theoretical predictions for solute parti-
tioning in comparison with experimental data on the solidi-
fication of Si-As alloys. Introducing the deviation from equi-
librium at both the interface and bulk liquid allows one to
describe the whole set of experimental data. Particularly, the
complete solute trapping is predicted by Eq. �47� for
Si-4.5 at. % As with VD=2.5 m/s and for Si-9.0 at. % As
with VD=2.1 m/s �Table I�. This provides a much better
agreement with experiments than that shown by the Aziz-
Kaplan model.

As can be seen in Fig. 3, predictions of the model of Azis
and Kaplan �Eq. �47� with VD→�� disagree with experimen-
tal data in the region 1.7�V �m/s��2.2 of solidification
velocities. One may note that at the same solidification
velocity—i.e., below about V=2 �m/s�—the “interface-
temperature–velocity” relationship also exhibits a clear de-
viation from experimental data �see Fig. 11 in Ref. �34��.
One may also attribute this deviation to the increasing influ-
ence of local nonequilibrium solute diffusion around the in-
terface and intensive solute trapping. Thermodynamic analy-

sis and numeric evaluations confirm the idea about the
pronounced influence of local equilibrium in bulk liquid on
solute trapping and interface-temperature–velocity relation-
ship at high solidification velocity �22,35�. This example
confirms that local nonequilibrium in the solute diffusion
field is responsible for nonequilibrium effects appearing in
rapid solidification �such as solute trapping and solute drag�
and essential influence on the interface response functions

FIG. 1. Predictions of the model given by Eq. �47�. Constants of
the binary system are equilibrium partition coefficient ke=0.1, bulk
diffusion speed VD=25 �m/s�, and interface diffusion speed VDI

=20 �m/s�. The curves present: diluted system, �1−ke�X0� �1
�dotted line�; slightly concentrated system, X0=0.10 �dashed line�;
concentrated system, X0=0.25 �dash-dotted line�; and equiconcen-
trated system, X0=0.50 �solid line�.

FIG. 2. Nonequilibrium solute partitioning function k�V ,X0�
given by the various models. Constants of the binary system are
nominal concentration of a solute X0=0.05 mole fraction, equilib-
rium partition coefficient ke=0.22, bulk diffusion speed VD

=19 �m/s�, and interface diffusion speed VDI=16 �m/s�. The dot-
ted line is given by the model of Aziz �13� for the diluted system
�1−ke�X0� �1, the dashed line is given by the model of Aziz and
Kaplan �2�, the dash-dotted line is given by the model of Sobolev
�21� for diluted system, and the solid line is predicted by the present
model given by Eq. �47�.

FIG. 3. �Color online� Solute partitioning versus interface veloc-
ity for experimental data �33,34� on the solidification of Si-As al-
loys. Curves 1� and 2� are given by Eq. �47� with VD→� for
4.5 at. % and 9.0 at. % of As in Si, respectively �which gives the
model of Azis and Kaplan �2��. They describe experiments at small
and moderate solidification velocities. Curves 1 and 2 are given by
Eq. �47� with finite speed VD for 4.5 at. % and 9.0 at. % of As in Si,
respectively. These show the ability to describe experiments in a
whole region of investigated solidification velocities for both alloys.
Data for calculations are given in Table I.
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�temperature, concentration, velocity� �35�. Thus, the agree-
ment between Eq. �47� and experimental data demonstrates
the pronounced effect of deviation from local equilibrium in
bulk liquid on solute trapping at higher solidification veloc-
ity.

Summarizing the behavior for solute partitioning shown
in Figs. 1–3, one can conclude that during rapid solidification
the consequences of deviations from local chemical equilib-
rium are threefold. First, the partition coefficient becomes
dependent on the growth velocity. Second, the liquidus and
solidus lines approach each other. For these two cases it can
be enough to introduce into the theory deviation from local
equilibrium at the interface only. Third, in the extreme case
�if the solidification velocity is equal to or greater than the
atomic diffusive speed in bulk liquid� the partition coefficient
k�V� becomes unity and the liquidus and solidus lines coin-
cide. This leads to a solid being far from chemical equilib-
rium upon diffusionless solidification. Such three conditions
are of special importance in the preparation of metastable
supersaturated solutions �15�.

VI. CONCLUSIONS

Solute trapping in rapid solidification of a binary alloy’s
system has been considered. It has been shown that the con-
dition for complete solute trapping leading to diffusionless
solidification follows directly from the solution for the diffu-
sion task. This task assumes both the low-frequency regime
�purely diffusion� and high-frequency regime �diffusion and
propagative regime� of atomic motion in a phenomenological
statement.

The two-level model has been used to define the solute
partitioning function. This model has been used previously
�e.g., in chromatography and for investigation of longitudinal
solute dispersion�, and it has been formally reduced to ex-
pressions for an extended version of the continuous growth

model. The extended version adopts two kinetic parameters:
solute diffusion speed VDI on the interface and solute diffu-
sion speed VD in bulk liquid.

A condition of complete solute trapping at the finite so-
lidification velocity equal to the diffusion speed, V=VD, has
been found. This fact is expressed by the general expression
�16� for the solute partitioning function. This condition de-
fines the equality of the concentration in the phases and de-
scribes complete solute trapping. Analysis leads to concrete
forms for the solute partitioning function. The first function
is given by Eq. �24�, and the second function for solute par-
titioning is described by Eq. �45�. Both these functions pre-
dict a sharp finishing of solute trapping and the onset of
diffusionless crystal growth at the solidification velocity V
equal to the solute diffusion speed VD in bulk liquid. A con-
crete expression for the liquid concentration XL

* at the inter-
face allows us to give predictions comparable with experi-
mental data.

The model predicts the complete behavior for the solute
partitioning function dependent on the solidification velocity
and alloy concentration. In comparison with the experimen-
tal data of Aziz et al. �33,34� on solidification of Si-As al-
loys, the model well predicts deviation of the solute parti-
tioning from equilibrium and complete solute trapping �Fig.
3�. The transition from chemically partition growth to diffu-
sionless growth at V=VD occurs sharply. As has been shown
for dendritic growth �36� such a sharp transition leads to an
abrupt exchange of growth kinetics in consistency with ex-
perimental data.
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TABLE I. Interface diffusion speed VDI and bulk diffusion speed VD for binary systems used in the
calculations of the partitioning function k�V ,X0� at the solid-liquid planar interface. Equilibrium partition
coefficient is taken as ke=0.3 from Refs. �33,34�.

Model Binary system VDI �m/s� VD �m/s� Reference

Aziz and Kaplan’s model �2� Si-4.5 at. % As 0.46 �33�
0.37 �34�

Aziz and Kaplan’s model �2� Si-9 at. % As 0.46 �33�
0.37 �34�

Sobolev’s solute partitioning function, Eq. �5� Si-4.5 at. % As 0.75 2.7 �21�
and Si-9 at. % As

Present model, Eq. �47� Si-4.5 at. % As 0.8 2.5 Current data

Si-9 at. % As 0.8 2.1 �22�
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